

Proposed

Recommendation

Document id Title Organisation /Author Date Status

 TR_LDWG001 EXPRESS-to-OWL conversion routine
LDWG – Pieter Pauwels
LDWG – Walter Terkaj
LDWG – Jakob Beetz

12 Oct.
2015

FINAL

BuildingSMART Proposed Recommendation:
EXPRESS-to-OWL conversion routine

Executive summary:

In this Technical Report, the BuildingSMART Linked Data Working Group (LDWG) doc-
uments the EXPRESS-to-OWL conversion routine that it proposes to the standardisation
committee of BuildingSMART. This conversion routine is independent of any practical
implementation in software. It lists the ways in which the diverse data types in EXPRESS
can be uniformly converted into OWL concepts. When implementing this conversion
routine, an OWL ontology can be obtained from the IFC schema (tested on IFC2X3_TC1,
IFC2X3_Final, IFC4, IFC4_ADD1).

Central to this EXPRESS-to-OWL conversion routine are three criteria:

1. The ifcOWL ontology must be in OWL2 DL.
2. The ifcOWL ontology should match the original EXPRESS schema as closely as

possible.
3. The ifcOWL ontology primarily aims at supporting the conversion of IFC instance

files into equivalent RDF files. Thus, herein it is of secondary importance that an
instance RDF file can be modelled from scratch using the ifcOWL ontology and an
ontology editor.

There are numerous ways to map an EXPRESS schema onto an OWL ontology. This has
been investigated in depth and at length during the Technical Session of the 3rd
International Workshop on Linked Data in Architecture and Construction (LDAC), held
in TU Eindhoven in July 2015. The decisions made there are available in the report at
http://ldac-2015.bwk.tue.nl/LDAC_2015_workshopreport.pdf. These decisions are
followed in the current proposal. Many of the considerations in this Technical Report are
also discussed at length in the article in Automation in Construction by P. Pauwels and
W. Terkaj ”EXPRESS to OWL for construction industry: towards a recommendable and
usable ifcOWL ontology”.

More information: http://www.buildingsmart-tech.org/future/linked-data

http://ldac-2015.bwk.tue.nl/LDAC_2015_workshopreport.pdf
http://www.buildingsmart-tech.org/future/linked-data

Proposed

Recommendation

1. Introduction

The EXPRESS-to-OWL conversion presented in this document is relying on the
IFC4_ADD1.exp EXPRESS schema. All examples used in this document come from this
schema. However, the conversion procedure is also applicable on IFC2X3_Final.exp,
IFC2X3_TC1.exp, and IFC4.exp.

Examples are documented using Fragments of EXPRESS declarations and Fragments of
OWL declarations in the Turtle syntax (TTL).

Proposed

Recommendation

2. Schema definition

An EXPRESS schema contains exactly one SCHEMA declaration that covers the entire
file, thereby assigning the body of this file to the particular schema declaration. An EX-
PRESS schema may import definitions from other schemas using the REFERENCE FROM
keywords. The IFC schema is self-contained and there is no import of other schemas
(see Fragment 1).

Fragment 1 - Printout of the SCHEMA declaration present in IFC4 ADD1.exp.

Each EXPRESS schema is converted into a separate ontology identified by a unique URI.
The following URI design is used for these ontologies:

http://www.buildingsmart-tech.org/ifcOWL/[schemaName]

with [schemaName] being one of the four schema names.

Fragment 2 shows in what this results in OWL. A number of Dublin Core (dce) metadata
annotations is added to the ontology declaration, indicating details about the origins of
the OWL ontology. The vann metadata annotations indicate preferred namespace URI
and namespace prefix, and the cc:license property indicates which license is associated
to the ontology.

SCHEMA IFC4;
...
END_SCHEMA;

Proposed

Recommendation

Fragment 2 - Definition of the ifcOWL ontology.

The ontologies rely on a number of existing ontologies. Fragment 3 shows the prefixes
and the URIs of the ontologies that are relied upon. Most notable here are the prefixes:

- list: <http://www.co-ode.org/ontologies/list.owl#>
This ontology contains the classes and properties that are used in the ifcOWL on-
tology to represent ordered list structures (e.g. list:hasNext).

- expr: <http://purl.org/voc/express#>
This ontology contains the classes and properties that are specific to the EX-
PRESS language and are not actually part of the IFC schema (e.g. expr:hasDouble).

<http://www.buildingsmart-tech.org/ifcOWL/IFC4_ADD1>

 rdf:type owl:Ontology ;

 dce:creator "Pieter Pauwels (pipauwel.pauwels@ugent.be)" ,
 "Walter Terkaj (walter.terkaj@itia.cnr.it)" ;

 dce:contributor "Aleksandra Sojic (aleksandra.sojic@itia.cnr.it)" ,
 "Jakob Beetz (j.beetz@tue.nl)" ,
 "Maria Poveda Villalon (mpoveda@fi.upm.es)" ,
 "Nam Vu Hoang (nam.vuhoang@gmail.com)";

rdfs:comment "Ontology automatically generated from the EXPRESS sche-
ma IFC4_ADD1' using the 'IFC-to-RDF' converter developed by Pieter Pau-
wels (pipauwel.pauwels@ugent.be), based on the earlier versions from Jyrki
Oraskari (jyrki.oraskari@aalto.fi) and Davy Van Deursen (da-
vy.vandeursen@ugent.be)" ;

 dce:title "IFC4_ADD1" ;
dce:description "OWL ontology for the IFC conceptual data schema and ex-

change file format for Building Information Model (BIM) da-
ta" ;

 dce:date "2015/10/02" ;
 dce:identifier "IFC4_ADD1" ;
 dce:language "en" ;
 vann:preferredNamespacePrefix "ifc" ;

vann:preferredNamespaceUri "http://www.buildingsmart-
tech.org/ifcOWL/IFC4_ADD1" ;

owl:imports <http://purl.org/voc/express> ;

 cc:license <http://creativecommons.org/licenses/by/3.0/> ;

Proposed

Recommendation

Fragment 3 - Printout of the ontologies that are used by the proposed ifcOWL ontology.

@base <http://www.buildingsmart-tech.org/ifcOWL/IFC4_ADD1 .
@prefix : <http://www.buildingsmart-tech.org/ifcOWL/IFC4_ADD1#> .
@prefix ifc: <http://www.buildingsmart-tech.org/ifcOWL/IFC4_ADD1#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dce: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix cc: <http://creativecommons.org/ns#> .
@prefix expr: <http://purl.org/voc/express#> .
@prefix vann: <http://purl.org/vocab/vann/> .
@prefix list: <http://www.co-ode.org/ontologies/list.owl#> .

Proposed

Recommendation

3. Simple data type declarations

Simple data types (i.e. NUMBER, REAL, INTEGER, LOGICAL, BOOLEAN, STRING, BINARY)
are commonly used in an IFC schema. As these data types are inherently part of the EX-
PRESS language, rather than the IFC schema, these data types are maintained in a sepa-
rate ontology, namely the EXPRESS ontology prefixed as ‘expr:’ in Fragment 3. In this
EXPRESS ontology, the simple data type concepts (e.g. expr:REAL in Fragment 4) are
available as classes with datatype properties (e.g. expr:hasDouble in Fragment 4) point-
ing to xsd literals (e.g. xsd:double in Fragment 4).

Fragment 4 - Printout of the RDF graph representation for the simple data type REAL in the ifcOWL schema.

The LOGICAL data type is a special case, as there is no equivalent xsd literal which can
hold the values TRUE, FALSE, and UNKNOWN. For this particular datatype, a special
expr:LogicalEnum class is constructed that is an enumeration of the individuals
expr:TRUE, expr:FALSE, and expr:UNKNOWN (see Fragment 5). The rest of the conver-
sion pattern follows the same approach as for the other simple data types, namely with a
class expr:LOGICAL and an object property (instead of a datatype property)
expr:hasLogical pointing to one of the three enumeration values.

expr:REAL

 rdf:type owl:Class ;
 rdfs:subClassOf
 [
 rdf:type owl:Restriction ;
 owl:allValuesFrom xsd:double ;
 owl:onProperty expr:hasDouble

] .

expr:has_double

 rdf:type owl:DatatypeProperty ;
 rdf:type owl:FunctionalProperty ;
 rdfs:label "hasDouble" ;
 rdfs:domain

 [
 rdf:type owl:Class ;
 owl:unionOf (expr:NUMBER expr:REAL)
] ;
 rdfs:range xsd:double .

Proposed

Recommendation

Fragment 5 - Printout of the RDF graph representation of the expr:LOGICAL class and its three named
individuals.

Also the classes and properties in Fragment 5 are specific to EXPRESS and are thus part
of a separate EXPRESS ontology at <http://purl.net/voc/express#>.

expr:hasLogical a owl:FunctionalProperty , owl:ObjectProperty ;
 rdfs:domain expr:LOGICAL ;
 rdfs:label "hasLogical" ;
 rdfs:range expr:LogicalEnum .

expr:LOGICAL a owl:Class ;
 rdfs:subClassOf [a owl:Restriction ;
 owl:allValuesFrom expr:LogicalEnum ;
 owl:onProperty expr:hasLogical
] .

expr:LogicalEnum a owl:Class ;
 rdfs:subClassOf expr:ENUMERATION .

expr:TRUE a expr:LogicalEnum , owl:NamedIndividual ;
 rdfs:label "TRUE" .

expr:FALSE a expr:LogicalEnum , owl:NamedIndividual ;
 rdfs:label "FALSE" .

expr:UNKNOWN a expr:LogicalEnum , owl:NamedIndividual ;
 rdfs:label "UNKNOWN" .

Proposed

Recommendation

4. Defined (named) data type declarations

A number of defined data types is typically available in any EXPRESS schema of IFC.
Most declarations are similar to the one given in Fragment 6 (IfcAreaDensityMeasure),
where a type name is given (e.g. IfcAreaDensityMeasure) together with a reference to a
simple data type (e.g. REAL).

Fragment 6 - Printout of the defined data type declaration IfcAreaDensityMeasure.

These defined data types are converted into classes, which are then declared as sub-
classes of the data type to which they are referring (see Fragment 7).

Fragment 7 - Printout of the RDF graph representation for the IfcAreaDensityMeasure defined data type.

TYPE IfcAreaDensityMeasure = REAL;
END_TYPE;

ifc:IfcAreaDensityMeasure

 rdf:type owl:Class ;
 rdfs:subClassOf expr:REAL .

Proposed

Recommendation

5. Aggregation data type declarations

Often used data types in the IFC schema are the aggregation data types SET, LIST, and
ARRAY. There exist also a BAG data type in EXPRESS, but it is not used in the IFC schema
at the moment, so it is also not handled in the conversion routine proposed here.

5.1 SET data type declarations

The SET aggregation data types are unordered aggregations of instances that are sup-
posed to be different from each other. These aggregations are typically declared for at-
tributes of EXPRESS entities (see Fragment 8).

Fragment 8 - Printout of a non-OPTIONAL SET data type declaration in RDF, with a lower cardinality
restriction of 1 (at least one instance should be present in the SET).

An unordered aggregation is naturally represented in OWL through a common non-
functional object property that can be assigned an unlimited number of times to the
same instance (see top of Fragment 9). OWL restrictions for this non-functional proper-
ty allow to represent object type and cardinality constraints (see bottom of Fragment 9).

Fragment 9 – Printout of the non-functional InnerCurves object property, and of the owl:Class declaration for
the IfcArbitraryProfileDefWithVoids entity data type declaration, including restrictions.

ENTITY IfcArbitraryProfileDefWithVoids

...
InnerCurves : SET [1:?] OF IfcCurve;
...
END_ENTITY;

ifc:innerCurves_IfcArbitraryProfileDefWithVoids
a owl:ObjectProperty ;

 rdfs:domain ifc:IfcArbitraryProfileDefWithVoids ;
 rdfs:label "InnerCurves" ;
 rdfs:range ifc:IfcCurve .

ifc:IfcArbitraryProfileDefWithVoids

rdfs:subClassOf
 [
 rdf:type owl:Restriction ;
 owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
 owl:onClass ifc:IfcCurve ;
 owl:onProperty ifc:innerCurves_IfcArbitraryProfileDefWithVoids

] ;
rdfs:subClassOf
 [
 rdf:type owl:Restriction ;
 owl:allValuesFrom ifc:IfcCurve ;
 owl:onProperty ifc:innerCurves_IfcArbitraryProfileDefWithVoids

] .

Proposed

Recommendation

5.2 LIST and ARRAY data type declarations

LIST and ARRAY data type declarations are harder to express in OWL declarations. Both
of them represent an ordered collection of elements. Herein, we propose to use the same
conversion routine for both data type declarations. An example LIST data type declara-
tion is given in Fragment 10, showing a LIST of at least 3 and at most 4 INTEGER in-
stances.

Fragment 10 – An example LIST data type declaration.

The LIST data type declaration in Fragment 10 is declared as part of a defined data type
declaration (see Fragment 6 and 7). Hence, the conversion routine for defined data type
declarations is proposed for the IfcCompoundPlaneAngleMeasure data type, subclassing
it to the expr:INTEGER_List class (see Fragment 11).

Fragment 11 – Printout of the RDF graph for the IfcCompoundPlaneAngleMeasure data type.

The expr:INTEGER_List class is part of the EXPRESS ontology, where it is defined as a
subclass of the list:OWLList class. This list ontology (list:) provides a number of object
properties (e.g. list:hasNext) that are used in the ifcOWL ontology to represent the car-
dinality restrictions for the LIST data type. In the case of IfcCompoundPlaneAngleMeas-
ure (LIST [3:4]), this results in the OWL restrictions shown in Fragment 12 and 13.

TYPE IfcCompoundPlaneAngleMeasure = LIST [3:4] OF INTEGER;
…

END_TYPE;

ifc:IfcCompoundPlaneAngleMeasure
rdf:type owl:Class ;
rdfs:subClassOf ifc:IfcDerivedMeasureValue , expr:INTEGER_List ;

Proposed

Recommendation

Fragment 12 – Concatenation of OWL restrictions to indicate that there should be at least three instances in
the expr:INTEGER_List.

Fragment 13 – Concatenation of OWL restrictions to indicate that there should be at most four instances in
the expr:INTEGER_List.

ifc:IfcCompoundPlaneAngleMeasure
rdfs:subClassOf [

 a owl:Restriction ;
 owl:onProperty list:hasNext ;
 owl:someValuesFrom [
 a owl:Restriction ;
 owl:onProperty list:hasNext ;
 owl:someValuesFrom [
 a owl:Restriction ;
 owl:onProperty list:hasNext ;
 owl:someValuesFrom expr:INTEGER_List
]
]
] ;

ifc:IfcCompoundPlaneAngleMeasure
rdfs:subClassOf [
 a owl:Restriction ;
 owl:allValuesFrom [
 a owl:Restriction ;
 owl:allValuesFrom [
 a owl:Restriction ;
 owl:allValuesFrom [
 a owl:Restriction ;
 owl:onClass expr:INTEGER_EmptyList ;
 owl:onProperty list:hasNext ;
 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger
] ;
 owl:onProperty list:hasNext
] ;
 owl:onProperty list:hasNext
] ;
 owl:onProperty list:hasNext
] .

Proposed

Recommendation

6. Constructed data type declarations

6.1 Enumeration data type declarations

Enumeration data type declarations are declared as presented in Fragment 14. The list
of values given in this declaration limits the values that an instance of this enumeration
data type can have.

Fragment 14 – Printout of the ENUMERATION data type declaration IfcAddressTypeEnum, which refers to a
list of the allowed values within this enumeration (OFFICE, SITE, HOME, DISTRIBUTIONPOINT and
USERDEFINED).

In the proposed EXPRESS-to-OWL conversion routine, Enumeration data types are con-
verted into regular OWL classes. The individuals that are declared in EXPRESS, are also
declared in ifcOWL as instances or Named Individuals of the Enumeration class (Frag-
ment 15). As can be seen in Fragment 15, a Named Individual can be an instance of a
number of OWL enumeration classes (e.g. ifc:SITE).

Fragment 15 – Printout of the RDF graph for the IfcAddressTypeEnum class, also showing two Named
Individuals of this class (ifc:DISTRIBUTIONPOINT and ifc:SITE).

TYPE IfcAddressTypeEnum = ENUMERATION OF

 (OFFICE

 ,SITE

 ,HOME

 ,DISTRIBUTIONPOINT

 ,USERDEFINED);
END_TYPE;

ifc:IfcAddressTypeEnum
 a owl:Class ;
 rdfs:subClassOf expr:ENUMERATION .

ifc:DISTRIBUTIONPOINT
 a ifc:IfcAddressTypeEnum , owl:NamedIndividual ;
 rdfs:label "DISTRIBUTIONPOINT" .

ifc:SITE
 a ifc:IfcAddressTypeEnum , ifc:IfcCrewResourceTypeEnum ,
 ifc:IfcAssemblyPlaceEnum , owl:NamedIndividual ;
 rdfs:label "SITE" .

Proposed

Recommendation

6.2 Select data type declarations

A select data type declaration is identified by the keyword SELECT, as shown in Frag-
ment 16. Any instantiation of such data type should refer to one instance of the listed
types or entities.

Fragment 16 – Printout of the SELECT data type declaration IfcMetricValueSelect, which refers to a list of
allowed data type instantiations (IfcAppliedValue, IfcMeasureWithUnit, IfcReference, IfcTable, IfcTimeSeries,
and IfcValue).

Similar to the conversion of Enumeration data types, Select data types are converted
into OWL classes. The classes that appear in the list of data types in the Select data type
declaration are declared as subclasses of the Select data type. So, for the example in
Fragment 17, ifc:IfcValue is declared as a subclass of ifc:IfcMetricValueSelect. Also in this
case, multiple superclasses can be available.

Fragment 17 – Printout of the RDF graph for the IfcMetricValueSelect class and its subclass: IfcValue.

TYPE IfcMetricValueSelect = SELECT

 (IfcAppliedValue

 ,IfcMeasureWithUnit
 ,IfcReference

 ,IfcTable

 ,IfcTimeSeries

 ,IfcValue);
END_TYPE;

ifc:IfcMetricValueSelect
 a owl:Class ;
 rdfs:subClassOf expr:SELECT .

ifc:IfcValue
 a owl:Class ;

rdfs:subClassOf expr:SELECT , ifc:IfcAppliedValueSelect ,
ifc:IfcMetricValueSelect .

Proposed

Recommendation

7. Entity (named) data type declarations

The core of the IFC EXPRESS schemas is represented in the Entity data type declarations.
Two example Entity data type declarations are given in Fragment 18 and 19 (IfcB-
SplineCurve and IfcObject). These two example declarations contain most, if not all, at-
tribute declaration types that can be part of an entity data type declaration.

Fragment 18 – Printout of the IfcBSplineCurve Entity data type declaration.

Fragment 19 – Printout of the IfcObject Entity data type declaration.

All entity data types are commonly converted into OWL class declarations, as is also dis-
played in Fragment 20 for IfcBSplineCurve. For this class, subclass relations are included
if they are present in the EXPRESS declaration (SUPERTYPE OF() and SUBTYPE OF()).
Also disjointness is taken into account. In the case of IfcBSplineCurve, the IfcBound-
edCurve supertype is actually declared as an abstract supertype of IfcBSplineCurve, Ifc-

ENTITY IfcBSplineCurve

ABSTRACT SUPERTYPE OF (ONEOF (IfcBSplineCurveWithKnots))
SUBTYPE OF (IfcBoundedCurve);
 Degree : IfcInteger;
 ControlPointsList : LIST [2:?] OF IfcCartesianPoint;
 CurveForm : IfcBSplineCurveForm;
 ClosedCurve : IfcLogical;
 SelfIntersect : IfcLogical;
DERIVE

 UpperIndexOnControlPoints : IfcInteger := (SIZEOF(ControlPointsList) - 1);
 ControlPoints : ARRAY [0:UpperIndexOnControlPoints] OF IfcCartesianPoint
:= IfcListToAr-
ray(ControlPointsList,0,UpperIndexOnControlPoints);
WHERE

 SameDim : SIZEOF(QUERY(Temp <* ControlPointsList |Temp.Dim <>
 ControlPointsList[1].Dim)) = 0;

END_ENTITY;

ENTITY IfcObject
ABSTRACT SUPERTYPE OF
(ONEOF(IfcActor,IfcControl,IfcGroup,IfcProcess,IfcProduct,IfcResource))
SUBTYPE OF (IfcObjectDefinition);
 ObjectType : OPTIONAL IfcLabel;
INVERSE

IsDeclaredBy : SET [0:1] OF IfcRelDefinesByObject FOR RelatedObjects;
Declares : SET [0:?] OF IfcRelDefinesByObject FOR RelatingObject;
IsTypedBy : SET [0:1] OF IfcRelDefinesByType FOR RelatedObjects;
IsDefinedBy : SET [0:?] OF IfcRelDefinesByProperties FOR RelatedObjects;

WHERE

UniquePropertySetNames : IfcUniqueDefinitionNames(IsDefinedBy);
END_ENTITY;

Proposed

Recommendation

CompositeCurve, IfcIndexedPolyCurve, IfcPolyline, and IfcTrimmedCurve. Such a decla-
ration implies disjointness, which is included in the OWL representation in Fragment 20.

Fragment 20 – Printout of the RDF graph representation for the IfcBSplineCurve class.

7.1 Regular attributes

For each entity data type, a number of regular attributes is typically declared. An exam-
ple of such a regular attribute declaration is given in Fragment 21. In this case, an attrib-
ute Degree is declared that points from an IfcBSplineCurve instance to an IfcInteger in-
stance.

Fragment 21 – Printout of a regular attribute declaration in EXPRESS.

Such regular attributes are commonly converted into OWL object properties (see Frag-
ment 22). As the Degree attribute is not pointing to a SET data type declaration, there is
only 1 Degree attribute allowed, which is taken into account by declaring the object
property as a functional object property.

In the proposed EXPRESS-to-OWL conversion routine, each object property is declared
with exactly one data type in its range and exactly one data type in its domain (see
Fragment 22), mainly because attributes in EXPRESS always point to at most one EX-
PRESS data type, and they are defined only within the scope of the entity data type dec-
laration in which they appear (1 to 1 relationship). To allow these 1 to 1 relationships
with ranges and domains, all object property URIs are named following the naming con-
vention “propertyName_IfcClassName” (see Fragment 22).

ifc:IfcBSplineCurve

rdf:type owl:Class ;
rdfs:subClassOf ifc:IfcBoundedCurve ;
rdfs:subClassOf

[
rdf:type owl:Class ;
owl:unionOf

(
ifc:IfcBSplineCurveWithKnots

)
] ;

owl:disjointWith
 ifc:IfcPolyline,
 ifc:IfcIndexedPolyCurve,
 ifc:IfcCompositeCurve,
 ifc:IfcTrimmedCurve .

ENTITY IfcBSplineCurve

…

Degree : IfcInteger;
…

END_ENTITY;

Proposed

Recommendation

Fragment 22 – Printout of the OWL object property declaration for a regular EXPRESS attribute.

In addition to the object property declarations as in Fragment 22, an object type re-
striction and a cardinality restriction are also added to the OWL class declaration, as is
displayed in Fragment 23. The cardinality restriction indicates that there should always
be exactly one instantiation of this property, as the EXPRESS attribute is not OPTIONAL
and also does not point to a SET aggregation data type.

Fragment 23 – Printout of the restrictions that are added to the IfcBSplineCurve class to handle object type
and cardinality restrictions.

7.2 Aggregation attributes

A number of attributes points to aggregation data types, in the case of IFC limited to
LIST, SET, and ARRAY data types. Fragments 8 to 13 already presented the way in which
these aggregation data types are handled. This is repeated in Fragment 24 to 26.

 Fragment 24 – Printout of the EXPRESS declaration of an attribute pointing to a LIST aggregation data type.

ifc:degree_IfcBSplineCurve
 a owl:ObjectProperty , owl:FunctionalProperty ;
 rdfs:domain ifc:IfcBSplineCurve ;
 rdfs:label "Degree" ;
 rdfs:range ifc:IfcInteger .

ifc:IfcBSplineCurve

rdfs:subClassOf
[

rdf:type owl:Restriction ;
owl:allValuesFrom ifc:IfcInteger ;
owl:onProperty ifc:degree_IfcBSplineCurve

] ;
rdfs:subClassOf

[
rdf:type owl:Restriction ;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onProperty ifc:degree_IfcBSplineCurve ;
owl:onClass ifc:IfcInteger

] .

ENTITY IfcBSplineCurve

…

ControlPointsList : LIST [2:?] OF IfcCartesianPoint;
…

END_ENTITY;

Proposed

Recommendation

Fragment 25 – Printout of the OWL object property declaration for an EXPRESS attribute that points to an
aggregation data type.

Fragment 26 – Printout of the restrictions that are added to the IfcBSplineCurve class to handle object type
and cardinality restrictions for the object property pointing to a LIST class.

7.3 Optional attributes

The EXPRESS language provides the option to declare OPTIONAL attributes, as shown in
Fragment 27. These attribute declarations are converted as if they were regular attrib-
utes (see Fragment 28), the only difference being that a maxQualifiedCardinality re-
striction is used (bottom of Fragment 29) instead of an exact qualifiedCardinality re-
striction (see Fragment 23).

ifc:controlPointsList_IfcBSplineCurve

rdfs:label "ControlPointsList" ;
rdfs:domain ifc:IfcBSplineCurve ;
rdfs:range ifc:IfcCartesianPoint_List ;
rdf:type owl:FunctionalProperty, owl:ObjectProperty .

ifc:IfcBSplineCurve

rdfs:subClassOf [
 a owl:Restriction ;
 owl:allValuesFrom ifc:IfcCartesianPoint_List ;
 owl:onProperty ifc:controlPointsList_IfcBSplineCurve
] ;
rdfs:subClassOf [
 a owl:Restriction ;
 owl:onClass ifc:IfcCartesianPoint_List ;
 owl:onProperty ifc:controlPointsList_IfcBSplineCurve ;
 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger
] ;
rdfs:subClassOf [
 a owl:Restriction ;
 owl:allValuesFrom [
 a owl:Restriction ;
 owl:onProperty list:hasNext ;
 owl:someValuesFrom [
 a owl:Restriction ;
 owl:onProperty list:hasNext ;
 owl:someValuesFrom ifc:IfcCartesianPoint_List
]
] ;
owl:onProperty ifc:controlPointsList_IfcBSplineCurve] .

Proposed

Recommendation

Fragment 27 – Printout of a regular attribute declaration in EXPRESS.

Fragment 28 – Printout of the OWL object property declaration for an OPTIONAL EXPRESS attribute.

Fragment 29 – Printout of the restrictions that are added to the IfcObject class to handle object type and
cardinality restrictions for the OPTIONAL object property.

7.4 Inverse attributes

The EXPRESS language allows to declare INVERSE attributes as well. Any such INVERSE
statement declares an attribute that is inverse to an attribute that has been declared
elsewhere and in the opposite direction. In the case of the IsDeclaredBy attribute in
Fragment 30, for example, the attribute going in the inverse direction can be found in
Fragment 31, namely the RelatedObjects attribute of the IfcRelDefinesByObject entity
data type.

ENTITY IfcObject
…

ObjectType : OPTIONAL IfcLabel;
…

END_ENTITY;

ifc:objectType_IfcObject
rdfs:label "ObjectType" ;
rdfs:domain ifc:IfcObject ;
rdfs:range ifc:IfcLabel ;
rdf:type owl:FunctionalProperty, owl:ObjectProperty .

ifc:IfcObject
rdf:type owl:Class ;
rdfs:subClassOf

[
rdf:type owl:Restriction ;
owl:allValuesFrom ifc:IfcLabel ;
owl:onProperty ifc:objectType_IfcObject

] ;
rdfs:subClassOf

[
rdf:type owl:Restriction ;
owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
owl:onProperty ifc:objectType_IfcObject ;
owl:onClass ifc:IfcLabel

] .

Proposed

Recommendation

Fragment 30 – Printout of the INVERSE attribute IsDeclaredBy for the IfcObject entity (named) data type
declaration.

Fragment 31 – Printout of the entity (named) data type declaration IfcRelDefinesByObject.

The INVERSE attribute is converted using the regular conversion procedure, only adding
an owl:inverseOf declaration.

Fragment 32 – Printout of the OWL object property declaration for an INVERSE EXPRESS attribute.

In two particular cases, the owl:inverseOf relation should not be added in order to keep
the ontology consistent:

1. when an attribute has two or more INVERSE attributes, otherwise those inverse
attributes would be considered equivalent by any OWL inference engine.

2. when a regular attribute or its INVERSE has a LIST or ARRAY as its range, other-
wise there would be a domain / range mismatch (because of the particular con-
version routine for ordered lists) and thus an inconsistent ontology.

7.5 Derive and where attributes

An example DERIVE attribute declaration is given in Fragment 33; an example WHERE
attribute is given in Fragment 34. DERIVE and WHERE attributes are not handled in the
current EXPRESS-to-OWL conversion routine.

ENTITY IfcObject
…

INVERSE IsDeclaredBy : SET [0:1] OF IfcRelDefinesByObject FOR RelatedObjects;
…

END_ENTITY;

ENTITY IfcRelDefinesByObject
SUBTYPE OF (IfcRelDefines);
RelatedObjects : SET [1:?] OF IfcObject;
RelatingObject : IfcObject;

END_ENTITY;

ifc:isDeclaredBy_IfcObject
 rdfs:domain ifc:IfcObject ;

 rdfs:range ifc:IfcRelDefinesByObject ;
 owl:inverseOf ifc:relatedObjects_IfcRelDefinesByObject ;
 rdf:type owl:FunctionalProperty, owl:ObjectProperty .

Proposed

Recommendation

Fragment 33 – Printout of a DERIVE attribute in EXPRESS.

Fragment 34 – Printout of a WHERE attribute in EXPRESS.

ENTITY IfcBSplineCurve

ABSTRACT SUPERTYPE OF (ONEOF(IfcBSplineCurveWithKnots))
SUBTYPE OF (IfcBoundedCurve);
…

DERIVE

 UpperIndexOnControlPoints : IfcInteger := (SIZEOF(ControlPointsList) - 1);
ControlPoints : ARRAY [0:UpperIndexOnControlPoints] OF IfcCartesianPoint
:= IfcListToArray(ControlPointsList,0,UpperIndexOnControlPoints);

…

END_ENTITY;

TYPE IfcBoxAlignment = IfcLabel;
…

 WHERE

WR1 : SELF IN [‘top-left’, ‘top-middle’, ‘top-right’, ‘middle-left’, ‘center’,
‘middle-right’, ‘bottom-left’, ‘bottom-middle’, ‘bottom-right’];

…

END_TYPE;

Proposed

Recommendation

8. FUNCTION declarations

An example FUNCTION declaration is given in Fig. 35. The conversion of FUNCTION dec-
larations is out of scope for the current proposed EXPRESS-to-OWL conversion routine.

Fragment 35 – Printout of a FUNCTION declaration in EXPRESS.

9. RULE declarations

An example RULE declaration is given in Fig. 36. The conversion of RULE declarations is
out of scope for the current proposed EXPRESS-to-OWL conversion routine.

Fragment 36 – Printout of a RULE declaration in EXPRESS.

FUNCTION IfcUniqueQuantityNames (Properties : SET [1:?] OF IfcPhysicalQuantity)
:LOGICAL;

LOCAL

Names : SET OF IfcLabel := [];
END_LOCAL;

REPEAT i:=1 TO HIINDEX(Properties);
Names := Names + Properties[i].Name;
END_REPEAT;

RETURN (SIZEOF(Names) = SIZEOF(Properties));
END_FUNCTION;

RULE IfcSingleProjectInstance
 FOR (IfcProject);
 WHERE

 WR1 : SIZEOF(IfcProject) <= 1;
END_RULE;

